Coverage for rta_reconstruction/dl1_reader.py: 72%
51 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-11 10:03 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-11 10:03 +0000
1import warnings
2from pathlib import Path
4import astropy.units as u
5import numpy as np
6import pandas as pd
7from astropy.coordinates import Angle
9from rta_reconstruction.utils.optics import OpticsDescription
12# TODO: put key in configuration, not hard-coded
13# TODO: make sure likelihood fit is only use in source dependent analysis, therefore really not needed, otherwise need to implement it here
14# TODO: do we need to create the "delta_t" column (lstchain does it from dragon time, which we don't have)
15def read_dl1(dl1_file_path: Path, dl1_param_key: str = "/dl1/event/telescope/parameters/LST_LSTCam") -> pd.DataFrame:
16 return pd.read_hdf(dl1_file_path, key=dl1_param_key)
19# TODO: is this required ? in alt-az dl1_maker we just drop the missing events ?
20# TODO: throw error instead of warning if repeated event id ? (could happen for small runs following each other in lst)
21# TODO: profile cause this looks slow
22# TODO: refactor to use DataFrame.fillna ?
23def interpolate_missing_alt_az(dl1_df: pd.DataFrame):
24 if ( 24 ↛ 30line 24 didn't jump to line 30 because the condition on line 24 was never true
25 "alt_tel" in dl1_df.columns
26 and "az_tel" in dl1_df.columns
27 and (np.isnan(dl1_df.alt_tel).any() or np.isnan(dl1_df.az_tel).any())
28 ):
29 # make sure there is at least one good pointing value to interp from.
30 if np.isfinite(dl1_df.alt_tel).any() and np.isfinite(dl1_df.az_tel).any():
31 if len(set(dl1_df.event_id)) != len(dl1_df.event_id):
32 warnings.warn(
33 "Beware, the data has been resorted by `event_id` to interpolate invalid pointing values but there are "
34 "several events with the same `event_id` in the data, thus probably leading to unexpected behaviour",
35 UserWarning,
36 )
37 dl1_df = dl1_df.sort_values(by="event_id")
38 for df_col in dl1_df["alt_tel", "az_tel"]:
39 x = np.arange(len(df_col))
40 mask_missing = np.isnan(df_col.values)
41 df_col = np.interp(x[mask_missing], x[~mask_missing], df_col.values[~mask_missing])
42 else:
43 dl1_df.alt_tel = -np.pi / 2.0
44 dl1_df.az_tel = -np.pi / 2.0
47def convert_az_and_sin_az_angle_to_degree(dl1_df: pd.DataFrame):
48 # Normalize all azimuth angles to the range [0, 360) degrees
49 dl1_df.az_tel = Angle(dl1_df.az_tel, u.rad).wrap_at(360 * u.deg).rad
51 # Dealing with `sin_az_tel` missing data because of the former version of lstchain
52 # TODO: this is copy paster from lstchain, but np.sin(degree) is not working
53 if "sin_az_tel" not in dl1_df.columns: 53 ↛ exitline 53 didn't return from function 'convert_az_and_sin_az_angle_to_degree' because the condition on line 53 was always true
54 dl1_df["sin_az_tel"] = np.sin(dl1_df.az_tel)
57# TODO: is this required ?
58# TODO: make key configurable
59# TODO: make sure we get the right optic per tel ID
60# TODO: make this able to work for other tel ID
61def read_telescope_optics(dl1_file_path: Path, optics_table_key: str = "/configuration/instrument/telescope/optics"):
62 optics_df = pd.read_hdf(dl1_file_path, key=optics_table_key)
63 layout_df = pd.read_hdf(dl1_file_path, key="/configuration/instrument/subarray/layout")
64 lst1_layout_row = layout_df.loc[layout_df["tel_id"] == 1].iloc[0]
65 optics_row = optics_df.iloc[lst1_layout_row["optics_index"]]
66 return OpticsDescription(
67 name=optics_row.name,
68 size_type=optics_row.size_type,
69 n_mirrors=optics_row.n_mirrors,
70 equivalent_focal_length=optics_row.equivalent_focal_length * u.meter, # TODO: read units from file ?
71 effective_focal_length=optics_row.effective_focal_length * u.meter,
72 mirror_area=optics_row.mirror_area * u.meter * u.meter,
73 n_mirror_tiles=optics_row.n_mirror_tiles,
74 reflector_shape=optics_row.reflector_shape,
75 )
78# TODO: configuration object for filtering ranges
79# TODO: re-name finite_params
80def filter_dl1(
81 dl1_df,
82 filters=None,
83 finite_params=None,
84):
85 """
86 Apply data filtering to a pandas dataframe.
87 Each filtering range is applied if the column name exists in the DataFrame so that
88 `(events >= range[0]) & (events <= range[1])`
90 Parameters
91 ----------
92 events: `pandas.DataFrame`
93 filters: dict containing events features names and their filtering range
94 example : dict(intensity=[0, np.inf], width=[0, np.inf], r=[0, np.inf])
95 finite_params: optional, None or list of strings
96 Column names: any row with a non-finite value in one of those columns will be discarded
97 Returns
98 -------
99 `pandas.DataFrame`
100 """
102 filter = np.ones(len(dl1_df), dtype=bool)
103 filters = {} if filters is None else filters
105 for col, (lower_limit, upper_limit) in filters.items():
106 filter &= (dl1_df[col] >= lower_limit) & (dl1_df[col] <= upper_limit)
108 if finite_params is not None: 108 ↛ 126line 108 didn't jump to line 126 because the condition on line 108 was always true
109 # TODO: a usefull warning could be: a filter column is not present ?...
110 _finite_params = list(set(finite_params).intersection(list(dl1_df.columns)))
111 # TODO: replace inf by nans, then run isna ??
112 dl1_df[_finite_params] = dl1_df[_finite_params].replace([np.inf, -np.inf], np.nan)
113 not_finite_mask = dl1_df[_finite_params].isna()
114 filter &= ~(not_finite_mask.any(axis=1))
115 # TODO: make this a useful warning: 1 per file ? / single warning entry
116 not_finite_counts = (not_finite_mask).sum(axis=0)[_finite_params]
117 if (not_finite_counts > 0).any(): 117 ↛ 126line 117 didn't jump to line 126 because the condition on line 117 was always true
118 warnings.warn("Data contains not-predictable events.")
119 warnings.warn("Column | Number of non finite values")
120 for k, v in not_finite_counts.items():
121 if v > 0:
122 warnings.warn(f"{k} : {v}")
124 # if pandas DataFrame or Series, transforms to numpy
125 # TODO: why convert to numpy ?
126 filter = filter.to_numpy() if hasattr(filter, "to_numpy") else filter
127 dl1_df = dl1_df[filter]
129 return dl1_df