Source code for rta_reconstruction.utils.optics

from enum import Enum, StrEnum, unique

import astropy.units as u
import numpy as np


[docs] @unique class SizeType(StrEnum): """ Enumeration of different telescope sizes (LST, MST, SST) """ #: Unkown UNKNOWN = "UNKNOWN" #: A telescope with a mirror diameter larger than 16m LST = "LST" #: A telescope with a mirror diameter larger than 8m MST = "MST" #: Telescopes with a mirror diameter smaller than 8m SST = "SST"
[docs] @unique class ReflectorShape(Enum): """ Enumeration of the different reflector shapes """ #: Unkown UNKNOWN = "UNKNOWN" #: A telescope with a parabolic dish PARABOLIC = "PARABOLIC" #: A telescope with a Davies--Cotton dish DAVIES_COTTON = "DAVIES_COTTON" #: A telescope with a hybrid between parabolic and Davies--Cotton dish HYBRID = "HYBRID" #: A dual mirror Schwarzschild-Couder reflector SCHWARZSCHILD_COUDER = "SCHWARZSCHILD_COUDER"
[docs] class OpticsDescription: """ Describes the optics of a Cherenkov Telescope mirror The string representation of an `OpticsDescription` will be a combination of the telescope-type and sub-type as follows: "type-subtype". You can also get each individually. Parameters ---------- name : str Name of this optical system n_mirrors : int Number of mirrors, i. e. 2 for Schwarzschild-Couder else 1 equivalent_focal_length : astropy.units.Quantity[length] Equivalent focal-length of telescope, independent of which type of optics (as in the Monte-Carlo). This is the nominal focal length for single mirror telescopes and the equivalent focal length for dual mirror telescopes. effective_focal_length : astropy.units.Quantity[length] The effective_focal_length is the focal length estimated from ray tracing to correct for coma aberration. It is thus not automatically available for all simulations, but only if it was set beforehand in the simtel configuration. This is the focal length that should be used for transforming from camera frame to telescope frame for all reconstruction tasks to correct for the mean aberration. mirror_area : astropy.units.Quantity[area] total reflective surface area of the optical system (in m^2) n_mirror_tiles : int number of mirror facets Raises ------ ValueError: if tel_type or mirror_type are not one of the accepted values TypeError, astropy.units.UnitsError: if the units of one of the inputs are missing or incompatible """ CURRENT_TAB_VERSION = "4.0" COMPATIBLE_VERSIONS = {"4.0"} __slots__ = ( "name", "size_type", "effective_focal_length", "equivalent_focal_length", "mirror_area", "n_mirrors", "n_mirror_tiles", "reflector_shape", )
[docs] @u.quantity_input( mirror_area=u.m**2, equivalent_focal_length=u.m, effective_focal_length=u.m, ) def __init__( self, name, size_type, n_mirrors, equivalent_focal_length, effective_focal_length, mirror_area, n_mirror_tiles, reflector_shape, ): self.name = name self.size_type = SizeType(size_type) self.reflector_shape = ReflectorShape(reflector_shape) self.equivalent_focal_length = equivalent_focal_length.to(u.m) self.effective_focal_length = effective_focal_length.to(u.m) self.mirror_area = mirror_area self.n_mirrors = n_mirrors self.n_mirror_tiles = n_mirror_tiles
def __hash__(self): """Make this hashable, so it can be used as dict keys or in sets""" # From python >= 3.10, hash of nan is random, we want a fixed hash also for # unknown effective focal length: if np.isnan(self.effective_focal_length.value): effective_focal_length = -1 else: effective_focal_length = self.effective_focal_length.to_value(u.m) return hash( ( round(self.equivalent_focal_length.to_value(u.m), 4), round(effective_focal_length, 4), round(self.mirror_area.to_value(u.m**2)), self.size_type.value, self.reflector_shape.value, self.n_mirrors, self.n_mirror_tiles, ) ) def __eq__(self, other): """For eq, we just compare equal hash""" return hash(self) == hash(other) def __str__(self): return self.name