Source code for rta_reconstruction.dl1_to_dl2

"""DL1 to DL2 processing script."""

import argparse
import json
from pathlib import Path
from typing import Dict

import astropy.units as u
import joblib
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from rta_reconstruction.dl1_reader import (
    convert_az_and_sin_az_angle_to_degree,
    filter_dl1,
    interpolate_missing_alt_az,
    read_dl1,
    read_telescope_optics,
)
from rta_reconstruction.dl2_io import init_dl2_file, write_dl2_df
from rta_reconstruction.image_displacement import (
    disp_to_pos,
    disp_vector_pol2cart,
    update_disp_with_effective_focal_length,
)
from rta_reconstruction.utils.coordinates import camera_to_altaz, camera_to_shower_coordinates
from rta_reconstruction.utils.rta_argparse import EnumAction
from rta_reconstruction.utils.rta_logging import LOGGING_LEVELS, init_logging


# TODO: move somewhere else ?
[docs] def reco_source_position_sky(cog_x, cog_y, disp_dx, disp_dy, focal_length, pointing_alt, pointing_az): """ Compute the reconstructed source position in the sky Parameters ---------- cog_x: `astropy.units.Quantity` cog_y: `astropy.units.Quantity` disp_dx: `astropy.units.Quantity` disp_dy: `astropy.units.Quantity` focal_length: `astropy.units.Quantity` pointing_alt: `astropy.units.Quantity` pointing_az: `astropy.units.Quantity` Returns ------- sky frame: `astropy.coordinates.sky_coordinate.SkyCoord` """ src_x, src_y = disp_to_pos(disp_dx, disp_dy, cog_x, cog_y) return camera_to_altaz(src_x, src_y, focal_length, pointing_alt, pointing_az)
# TODO: use pydantic configuration instead of json to Dict # TODO: use more generic type hints than specific class (sklearn regressor/classifier maybe ?) # TODO: refactor in several steps to isolate the "predict" calls, to make it simpler to implement training
[docs] def dl1_to_dl2( dl1_df: pd.DataFrame, dl1_dl2_config: Dict, effective_focal_length, energy_regressor: RandomForestRegressor, gamma_classifier: RandomForestClassifier, image_displacement_vector_regressor: RandomForestRegressor | None = None, disp_norm_regressor: RandomForestRegressor | None = None, disp_sign_classifier: RandomForestClassifier | None = None, ) -> pd.DataFrame: # TODO: make very clear in doc that this is "inplace" operations # (this doesn't copy, simply we will add column to the df) dl2_df = dl1_df # TODO: refactor model computation to individual functions (if surrounding operations are really required) # TODO: is log energy or energy used by disp vector, disp norm or disp sign ? then need concatenate # to avoid copy ? Can't use "out" since predict doesn't support that API, could copy only vector of # size (#samples) instead of everything though # what could do, since fortran indexing may be best (TEST!?) # load everything as a fortran order rec-array (pre-allocated with dl2 columns.) # that way we can in with column names, and avoid pandas copy # pytables read has an "out" parameters, but it doesn't check the types between out and datadisk (only copies) dl2_df["log_reco_energy"] = energy_regressor.predict(dl2_df.loc[:, dl1_dl2_config["energy_regressor_features"]]) dl2_df["reco_energy"] = 10 ** dl2_df["log_reco_energy"] if image_displacement_vector_regressor is not None: disp_vector = image_displacement_vector_regressor.predict( dl2_df.loc[:, dl1_dl2_config["disp_vector_regressor_features"]] ) else: dl2_df["reco_disp_norm"] = disp_norm_regressor.predict( dl2_df.loc[:, dl1_dl2_config["disp_norm_regressor_features"]] ) disp_sign_proba = disp_sign_classifier.predict_proba( dl2_df[:, dl1_dl2_config["disp_sign_classifier_features"]] ) # TODO: since we only care about something been gamma or not, 1 probability should be enough # we need to change the models for it to predict "gamma" or "not-gamma" with single proba. col = list(disp_sign_classifier.classes_).index(1) disp_sign = np.where(disp_sign_proba[:, col] > 0.5, 1, -1) dl2_df["reco_disp_sign"] = disp_sign dl2_df["reco_disp_sign_proba"] = disp_sign_proba[:, 0] disp_vector = disp_vector_pol2cart(dl2_df["reco_disp_norm"], dl2_df["psi"], disp_sign) dl2_df["reco_disp_dx"] = disp_vector[:, 0] dl2_df["reco_disp_dy"] = disp_vector[:, 1] dl2_df["reco_src_x"], dl2_df["reco_src_y"] = disp_to_pos( dl2_df.reco_disp_dx, dl2_df.reco_disp_dy, dl2_df.x, dl2_df.y, ) # TODO: stack coordinates and project in // as in pyhiperta ? longi, _ = camera_to_shower_coordinates( dl2_df["reco_src_x"], dl2_df["reco_src_y"], dl2_df["x"], dl2_df["y"], dl2_df["psi"] ) # TODO: check sign of longitudinal coordinate with HiPeRTA # TODO: is this required ? # Obtain the time gradient with sign relative to the reconstructed shower direction (reco_src_x, reco_src_y) # Defined positive if light arrival times increase with distance to it. Negative otherwise: dl2_df["signed_time_gradient"] = -1 * np.sign(longi) * dl2_df["time_gradient"] # Obtain skewness with sign relative to the reconstructed shower direction (reco_src_x, reco_src_y) # Defined on the major image axis; sign is such that it is typically positive for gammas: dl2_df["signed_skewness"] = -1 * np.sign(longi) * dl2_df["skewness"] # TODO: what if we use simulations but still want to use the reconstructed alt az ? # TODO: better default value (nan ?) if "mc_alt_tel" in dl2_df.columns: alt_tel = dl2_df["mc_alt_tel"].values az_tel = dl2_df["mc_az_tel"].values elif "alt_tel" in dl2_df.columns: alt_tel = dl2_df["alt_tel"].values az_tel = dl2_df["az_tel"].values else: alt_tel = -np.pi / 2.0 * np.ones(len(dl2_df)) az_tel = -np.pi / 2.0 * np.ones(len(dl2_df)) # TODO: this calls astropy coordinates changing routines, can it be optimized ? src_pos_reco = reco_source_position_sky( dl2_df.x.values * u.m, dl2_df.y.values * u.m, dl2_df.reco_disp_dx.values * u.m, dl2_df.reco_disp_dy.values * u.m, effective_focal_length, alt_tel * u.rad, az_tel * u.rad, ) dl2_df["reco_alt"] = src_pos_reco.alt.rad dl2_df["reco_az"] = src_pos_reco.az.rad gammaness = gamma_classifier.predict_proba(dl2_df.loc[:, dl1_dl2_config["gamma_classifier_features"]]) # TODO: replace this with a single proba predictor like disp sign, so no hardcoded class values! # gammaness is the prediction probability for the class 0 (proton: class 101) mc_type_gamma, mc_type_proton = 0, 101 col = list(gamma_classifier.classes_).index(mc_type_gamma) dl2_df["gammaness"] = gammaness[:, col] dl2_df["reco_type"] = np.where(gammaness[:, col] > 0.5, mc_type_gamma, mc_type_proton) return dl2_df
[docs] def dl1_dl2_arg_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description="Stand-alone DL1 to DL2 processing from ctapipe-lstchain for Real Time Analysis", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--config", "-c", action="store", type=Path, dest="config_path", help="Path to the configuration file", required=True, ) parser.add_argument( "--energy_regressor", "-e", action="store", type=Path, required=True, dest="energy_regressor_model_path", help="Path to the energy regressor model (.sav)", ) parser.add_argument( "--gamma_classifier", "-g", action="store", type=Path, required=True, dest="gamma_classifier_path", help="Path to the gamma/hadron classifier model (.sav)", ) parser.add_argument( "--image_displacement_vector_regressor", "-v", action="store", type=Path, default=None, dest="disp_vector_regressor_model_path", help="Path to the image displacement vector regressor model (.sav). " "Either this argument must be specified, or `image_displacement_norm_regressor` and " "`image_displacement_sign_classifier`", ) parser.add_argument( "--image_displacement_norm_regressor", "-n", action="store", type=Path, default=None, dest="disp_norm_regressor_model_path", help="Path to the image displacement norm regressor model (.sav)" "Either this argument and `image_displacement_sign_classifier` must be specified, or " "`image_displacement_vector_regressor`", ) parser.add_argument( "--image_displacement_sign_classifier", "-s", action="store", type=Path, default=None, dest="disp_sign_classifier_model_path", help="Path to the image displacement sign classifier model (.sav)" "Either this argument and `image_displacement_norm_regressor` must be specified, or " "`image_displacement_vector_regressor`", ) parser.add_argument( "--input_dl1", "-i", type=Path, nargs="+", dest="dl1_file_paths", help="Path(s) to DL1 file(s) to process to DL2.", required=True, ) parser.add_argument( "--log_file", "-l", type=Path, dest="log_file_path", help="Path to a file where this process will log its execution", ) parser.add_argument( "--log_level", type=LOGGING_LEVELS, action=EnumAction, dest="logging_level", help="Logging level: all messages with a level severity above or equal the specified level will be logged.", default=LOGGING_LEVELS.WARNING, ) parser.add_argument( "--output_dl2", "-o", type=Path, nargs="+", dest="dl2_file_paths", help="Path(s) to DL2 file(s) to write the output.", required=True, ) return parser
[docs] def main(): parser = dl1_dl2_arg_parser() args = parser.parse_args() init_logging(log_header_str="RTA_DL1_DL2", log_filename=args.log_file_path, log_level=args.logging_level) if len(args.dl1_file_paths) != len(args.dl2_file_paths): raise argparse.ArgumentTypeError( "The number {} of input dl1 files must match the number {} of output DL2 files.".format( len(args.dl1_file_paths), len(args.dl2_file_paths) ) ) if args.disp_vector_regressor_model_path is not None and args.disp_norm_regressor_model_path is not None: raise argparse.ArgumentTypeError( "`image_displacement_vector_regressor` and `image_displacement_norm_regressor` are mutually exclusive arguments. " "Got {} and {}".format(args.disp_vector_regressor_model_path, args.disp_norm_regressor_model_path) ) if args.disp_vector_regressor_model_path is not None and args.disp_sign_classifier_model_path is not None: raise argparse.ArgumentTypeError( "`image_displacement_vector_regressor` and `image_displacement_sign_classifier` are mutually exclusive arguments. " "Got {} and {}".format(args.disp_vector_regressor_model_path, args.disp_sign_classifier_model_path) ) if ( args.disp_vector_regressor_model_path is None and args.disp_norm_regressor_model_path is None and args.disp_sign_classifier_model_path is None ): raise argparse.ArgumentTypeError( "Either `image_displacement_vector_regressor` or `image_displacement_norm_regressor` and " "`image_displacement_sign_classifier` must be specified, got none of them." ) if (args.disp_norm_regressor_model_path is not None and args.disp_sign_classifier_model_path is None) or ( args.disp_norm_regressor_model_path is None and args.disp_sign_classifier_model_path is not None ): raise argparse.ArgumentError( "`image_displacement_vector_regressor` and `image_displacement_sign_classifier` must both be specified if used. Got {} and {}".format( args.disp_norm_regressor_model_path, args.disp_sign_classifier_model_path ) ) with open(args.config_path, "r") as config_f: config = json.load(config_f) energy_regressor = joblib.load(args.energy_regressor_model_path) gamma_classifier = joblib.load(args.gamma_classifier_path) all_features = config["energy_regressor_features"] + config["gamma_classifier_features"] using_disp_vector = args.disp_vector_regressor_model_path is not None if using_disp_vector: disp_vector_regressor = joblib.load(args.disp_vector_regressor_model_path) disp_norm_regressor = None disp_sign_classifier = None all_features += config["disp_vector_regressor_features"] else: disp_vector_regressor = None disp_norm_regressor = joblib.load(args.disp_norm_regressor_model_path) disp_sign_classifier = joblib.load(args.disp_sign_classifier_model_path) all_features += config["disp_norm_regressor_features"] + config["disp_sign_classifier_features"] for dl1_file_path, dl2_file_path in zip(args.dl1_file_paths, args.dl2_file_paths): # TODO: read dl1 straight in a numpy array (avoid pandas to avoid copy before passing to sklearn) # should be Fortran order ? -> benchmark dl1_df = read_dl1(dl1_file_path) # TODO: make table "key" configurable interpolate_missing_alt_az(dl1_df) # TODO: required after dl1 alt-az maker ? what about simple dropna tel_optics = read_telescope_optics(dl1_file_path) # TODO: make sure correct convert_az_and_sin_az_angle_to_degree( dl1_df ) # TODO: is this required ? (angles come from arctan2, and sin is not used ?) dl1_df = filter_dl1( dl1_df, filters=config["events_filters"], finite_params=all_features ) # TODO: config ? (filter events based on column names, filters, ~isnan, etc.) # TODO: is this required ? # Update parameters related to target direction on camera frame for MC data # taking into account of the aberration effect using effective focal length if "disp_norm" in dl1_df.columns: update_disp_with_effective_focal_length(dl1_df, effective_focal_length=tel_optics.effective_focal_length) # TODO: make dl1_to_dl2 not return anything - inplace operations in the df dl2_df = dl1_to_dl2( dl1_df, config, tel_optics.effective_focal_length, energy_regressor, gamma_classifier, disp_vector_regressor, disp_norm_regressor, disp_sign_classifier, ) init_dl2_file(dl2_file_path, dl1_file_path) write_dl2_df( dl2_file_path, dl2_df, attributes={"config": config}, )
if __name__ == "__main__": main()